Ubiquitination Regulates PTEN Nuclear Import and Tumor Suppression
نویسندگان
چکیده
The PTEN tumor suppressor is frequently affected in cancer cells, and inherited PTEN mutation causes cancer-susceptibility conditions such as Cowden syndrome. PTEN acts as a plasma-membrane lipid-phosphatase antagonizing the phosphoinositide 3-kinase/AKT cell survival pathway. However, PTEN is also found in cell nuclei, but mechanism, function, and relevance of nuclear localization remain unclear. We show that nuclear PTEN is essential for tumor suppression and that PTEN nuclear import is mediated by its monoubiquitination. A lysine mutant of PTEN, K289E associated with Cowden syndrome, retains catalytic activity but fails to accumulate in nuclei of patient tissue due to an import defect. We identify this and another lysine residue as major monoubiquitination sites essential for PTEN import. While nuclear PTEN is stable, polyubiquitination leads to its degradation in the cytoplasm. Thus, we identify cancer-associated mutations of PTEN that target its posttranslational modification and demonstrate how a discrete molecular mechanism dictates tumor progression by differentiating between degradation and protection of PTEN.
منابع مشابه
Ndfip1 regulates nuclear Pten import in vivo to promote neuronal survival following cerebral ischemia
PTEN (phosphatase and tensin homologue deleted on chromosome TEN) is the major negative regulator of phosphatidylinositol 3-kinase signaling and has cell-specific functions including tumor suppression. Nuclear localization of PTEN is vital for tumor suppression; however, outside of cancer, the molecular and physiological events driving PTEN nuclear entry are unknown. In this paper, we demonstra...
متن کاملPTEN Enters the Nuclear Age
Regulation of the PTEN tumor suppressor protein is poorly understood. In this issue, Wang et al. (2007) and Trotman et al. (2007) describe how ubiquitination regulates PTEN stability and its nuclear localization. Additionally, Shen et al. (2007) report that a nuclear pool of PTEN helps to maintain chromosomal stability.
متن کاملNuclear-cytoplasmic partitioning of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) differentially regulates the cell cycle and apoptosis.
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN), a tumor suppressor phosphatase that dephosphorylates both protein and lipid substrates, is found to be mutated in both heritable and sporadic breast cancer. Cellular PTEN has been shown to regulate Akt phosphorylation, mitogen-activated protein kinase (MAPK) phosphorylation, p27(kip1), and cyclin D1 protein levels. Additionally, ...
متن کاملKRT19 regulates cell proliferation and migration Regulation of cell proliferation and migration by keratin19-induced nuclear import of early growth response-1 in breast cancer cells
Purpose: Keratin19 (KRT19) is the smallest known type I intermediate filament and is used as a marker for RT-PCR-mediated detection of disseminated tumors. In this study, we investigated the functional analysis of KRT19 in human breast cancer. Experimental Design: Using a shRNA system, we silenced KRT19 in breast cancer cells. KRT19 silencing was verified by western blot analysis and immunocyto...
متن کاملUbiquitin-specific protease 8 links the PTEN-Akt-AIP4 pathway to the control of FLIPS stability and TRAIL sensitivity in glioblastoma multiforme.
The antiapoptotic protein FLIP(S) is a key suppressor of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human glioblastoma multiforme (GBM) cells. We previously reported that a novel phosphatase and tensin homologue (PTEN)-Akt-atrophin-interacting protein 4 (AIP4) pathway regulates FLIP(S) ubiquitination and stability, although the means by which PTEN and A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 128 شماره
صفحات -
تاریخ انتشار 2007